Prediction of Sedimentation Coefficients of Random Coil Polymers

C. M. KOK* and ALFRED RUDIN, Guelph-Waterloo Centre for Graduate Work in Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Synopsis

The concentration dependence of the radius of gyration and the equivalent hydrodynamic radius of polymers in solution is described well by a model developed in earlier work. The calculated hydrodynamic volumes of solvated polymers are combined with the statistical mechanical calculations of Burgers for hard spheres to predict sedimentation coefficients at finite concentrations. The predicted values are in good agreement with experimental results.

INTRODUCTION

Previous articles from this laboratory¹⁻⁴ have described a model which predicts the concentration dependence of the radius of gyration and the equivalent hydrodynamic radius of random coil polymers in solution. This theory has been applied to predict the concentration dependence of elution volumes in size exclusion chromatography.^{1,2,5} When the calculated hydrodynamic volumes of solvated polymers are used with simple statistical-mechanical hard-sphere models, it is possible to obtain accurate predictions of turbidity and colligative properties of polymer solutions,⁶ second virial coefficients,⁷ and Flory–Huggins interaction parameters.⁸ The input parameters needed are an average molecular weight of the polymer sample, its intrinsic viscosity in the solvent of interest, and its intrinsic viscosity under theta conditions.

The model used cannot possibly accord with all the properties of real polymer solutions, but it is able to predict a modest variety of phenomena with good accuracy without invoking adjustable parameters. This article reports the prediction of sedimentation coefficients by using the Rudin model¹⁻⁴ and the theoretical relation derived by Burgers^{9,10} for hard spheres.

THEORY

According to the Rudin model,^{1,2} the radius of gyration of a polymer molecule in solution can be written as

$$R_G = \left[\frac{3[\eta]M\phi_x}{9.3 \times 10^{24}\phi_x + 4\pi N_0 c([\eta] - [\eta]_{\theta})}\right]^{1/3}$$
(1)

where M is the molecular weight of the polymer, $[\eta]$ is the intrinsic viscosity of the polymer in the given solvent (cm³/g), $[\eta]_{\theta}$ is the intrinsic viscosity under θ conditions, N_0 is the Avogadro's constant, and c is the concentration of polymer

^{*} On leave from Universiti Sains, Penang, Malaysia.

Journal of Applied Polymer Science, Vol. 27, 3357–3368 (1982) © 1982 John Wiley & Sons, Inc. CCC 0021-8995/82/093357-12\$02.20

Polymer	Solvent	Temp (°C)	$K imes 10^3$ (cm ³ /g)	a	Reference
Poly(styrene)	Toluene	25	8.48	0.748	14
	Methyl ethyl ketone	25	3 9 .0	0.58	15
$Poly(\alpha$ -methyl styrene)	Toluene	25	7.06	0.744	16
Poly(isobutene)	Cyclohexane	30	27.6	0.69	12
Poly(methyl methacrylate)	Acetone	20	5.45	0.725	17
· · ·	Dioxane	25	6.54	0.75	17

TABLE I Mark-Houwink Constants of Polymers

(g/cm³). The dimensions of the solvated polymer molecules are assumed to shrink with increasing concentration from a limiting, maximum magnitude at infinite dilution to minimum sizes characteristic of the unperturbed, θ state when the volume fraction of solute and included solvent has reached a critical value ϕ_x . At zero concentration the second term in the denominator of eq. (1) vanishes, and this expression reduces to the Flory-Fox form for infinite dilution.¹¹ The coefficient of the first term in the denominator incorporates Flory's universal constant¹² with concentration units in g/cm³.

Recent experimental data³ have shown that

$$R_H = 0.77 R_G \tag{(}$$

2)

where R_{H} is the Stokes-Einstein hydrodynamic radius and R_{G} is the radius of gyration.

Parameters Used in Calculations					
Polymer	Solvent	Partial specific volume of polymer (cm ³ /g)	Density of solvent ¹⁸ (g/cm ³)	Viscosity of solvent ^{18.19} (poise)	
Polystyrene	Toluene	0.91320	0.8669	0.0055	
	Methyl ethyl ketone	0.954 ²⁰	0.805	0.0042	
$Poly(\alpha$ -methyl styrene)	Toluene	0.913ª	0.8669	0.0055	
Poly(isobutene)	Cyclohexane	1.091 ²¹	0.779	0.0090	
Poly(methyl methacrylate)	Acetone	0.79818	0.7899	0.0031	
Poly(methyl methacrylate)	Dioxane	0.81821	1.027	0.0119	

TABLE II

Assumed same as polystyrene.

TABLE III K_{θ} and K_{I} of Polymers				
Polymer	Temp (°C)	$\frac{K_{\theta} \times 10^3}{(\mathrm{cm}^3/\mathrm{g})}$	$\begin{array}{c} K_I \times 10^3 \\ (\mathrm{cm}^3/\mathrm{g}) \end{array}$	
Poly(styrene)	34.5	84.6 ²²	4.923	
$Poly(\alpha$ -methyl styrene)	34.5	73.016	4.9*	
Poly(isobutene)	25	13024	10.09 ^b	
Poly(methyl methacrylate)	45	48 ²⁵	4.85 ²⁶	

• Assumed similar to poly(styrene).

^b Calculated according to procedure of Ref. 4.

Fig. 1. Sedimentation constant as a function of concentration for 1.8×10^6 molecular weight polystyrene in the θ solvent, *trans*-decalin. The line is predicted and the points are experimental values from Ref. 27.

Sedimentation coefficients, S_0 , at infinite dilution can be obtained from the Svedberg equation¹³:

$$S_0 = \frac{M(1 - \bar{\nu}\rho)}{N_0 6\pi \eta_0 R_H} \tag{3}$$

where \overline{v} is the partial specific volume of the polymer, ρ is the solution density, and η_0 is the solvent viscosity.

Fig. 2. Sedimentation constant of 1.1×10^5 molecular weight polystyrene in toluene. The points are experimental. (---) Predicted by the present model; (---) calculated without allowance for concentration effects.

Fig. 3. Sedimentation constant of 3.9×10^5 molecular weight polystyrene in toluene. Symbols are as in Figure 2.

The concentration dependence of sedimentation coefficients is generally written as

$$S = S_0 (1 + k_1 c)^{-1} \tag{4}$$

Using the hard spheres calculations of Burgers⁹

$$k_1 = (55/8)\phi \tag{5}$$

where ϕ is the volume fraction of spheres. For a polymer in solution

$$\phi = N_0 c V_h / M \tag{6}$$

where V_h is the hydrodynamic volume (cm³/molecule), c is in cm³/g, M in g/mol, and N_0 in molecules/mol. Hence, for the hard sphere model

Fig. 4. Sedimentation constant of 1.8×10^6 polystyrene in toluene. Symbols are as in Figure 2.

Fig. 5. Sedimentation constants as a function of concentration for 1×10^5 molecular weight poly(α -methylstyrene) in toluene. The points are experimental.²⁸ (---) Predicted by the present model; (---) calculated without allowance for concentration effects.

$$k_1 = \frac{55}{8} \left(\frac{4\pi N_0 c R_H^3}{3M} \right)$$
(7)

Sedimentation coefficients at finite concentrations can be calculated using eqs. (1)-(4) and (7).

According to eq. (1), R_G decreases with concentration until the concentration, c_x , corresponding to the critical volume fraction ϕ_x , is reached. This represents the boundary concentration at which the solvated polymer molecule has shrunk to its unperturbed volume. The value of c_x is given by^{1,2}

$$c_x = \frac{9.3 \times 10^{24} \phi_x}{4\pi N_0[\eta]_{\theta}}$$
(8)

Fig. 6. Sedimentation constants for 2.34×10^5 molecular weight poly(α -methylstyrene in toluene). Symbols are as in Figure 5.

Fig. 7. Sedimentation constants for 6×10^6 molecular weight poly(α -methylstyrene) in toluene. Symbols are as in Figure 5.

 ϕ_x has recently been shown to be adequately represented by⁴

$$\phi_x = \frac{[\eta] - [\eta]_{\theta}}{[\eta]_I - [\eta]_{\theta}} \tag{9}$$

where $[\eta]_I$ is the intrinsic viscosity for a hypothetical ideal solvent. Further,

$$[\eta] = KM^a \tag{10}$$

$$[\eta]_{\theta} = K_{\theta} M^{1/2} \tag{11}$$

where K, K_{θ} , and a are the appropriate constants in the Mark-Houwink equations. $[\eta]_I$ in eq. (9) can be calculated from K_{θ} values or obtained from the lists of experimental values.⁴

Fig. 8. Sedimentation constant of 1.72×10^5 molecular weight polyisobutene in cyclohexane. The points are experimental,¹⁷ and the line is predicted.

Fig. 9. Sedimentation constant of 6.7×10^5 molecular weight polyisobutene in cyclohexane. Symbols are as in Figure 8.

Fig. 10. Sedimentation constants of 1.42×10^6 molecular weight polyisobutene in cyclohexane. Symbols are as in Figure 8.

Fig. 11. Sedimentation constants of \overline{M}_{w} 3.2 × 10⁶ poly(methyl methacrylate) in acetone. The points are experimental,²⁶ and the line is predicted.

Fig. 12. Sedimentation constants for poly(methyl methacrylate) polymers in acetone. Symbols are as in Figure 11. (E) $\overline{M}_w = 1.42 \times 10^6$; (H) $\overline{M}_w = 1.48 \times 10^5$ (c_x of H = 19.8 × 10⁻³ g/cm³).

RESULTS

The required input parameters for this application are $[\eta]$, $[\eta]_{\theta}$, and $[\eta]_{I}$. These were obtained as described above. The constants and physical parameters used in this work are summarized in Tables I, II, and III.

Figures 1-4 show the recent sedimentation results of Nystrom and co-workers.²⁷ Under θ conditions (Fig. 1), c_x and the second term in the denominator of eq. (1) are zero ($[\eta] = [\eta]_{\theta}$). The predictions of the present model coincide with those of the infinite dilution Flory-Fox equation¹¹ in that case. The agreement with experiment is seen to be good, in this figure. Figures 2-4 compare predicted and experimental sedimentation constant-concentration relations for various polystyrenes in the good solvent, toluene. A better fit is provided by the theory of this article, even at concentrations well above c_x .

Fig. 13. Sedimentation constants for poly(methyl methacrylate) polymers in acetone. Symbols are as in Figure 11. (D) $\overline{M}_w = 2.02 \times 10^6$; (J) $\overline{M}_w = 7.72 \times 10^4$ (c_x of J = 24.6 × 10⁻³ g/cm³).

Fig. 14. Sedimentation constants of poly(methyl methacrylate) in acetone. Symbols are as in Figure 11. (B) $\overline{M}_w = 4.59 \times 10^6$; (G) $\overline{M}_w = 3.06 \times 10^5$ (c_x of G = 14.6 × 10⁻³ g/cm³).

Further tests of the model are shown in Figures 5–7, for $poly(\alpha$ -methylstyrene) samples in toluene.²⁸ Good agreement with experimental results is again observed.

Figures 8–10 compare our predicted values with the experimental data of Mandelkern and co-workers¹⁷ for polyisobutene in cyclohexane. The experimental points here were read from published plots and are probably less reliable than those in the first two data sets quoted. The model gives good agreement with experimental values in this case for concentrations up to about $0.5 c_x$. The

Fig. 15. Sedimentation constants for poly(methyl methacrylate) polymers in acetone. Symbols are as in Figure 11. (A) $\overline{M}_w = 7.44 \times 10^6$; (F) $\overline{M}_w = 6.11 \times 10^5$ (c_x of F = 10.6×10^{-3} g/cm³).

Polymer	Solvent	Polymer mol wt × 10 ⁻⁵	Expt k _s (cm ³ /g)	Calcd k _s (cm ³ /g)	References
Poly(styrene)	Toluene (temp = 20° C)	13.0	400	366	29
		8.0	310	288	
		5.5	250	236	
		2.5	150	147	
	Methyl ethyl ketone (temp =	13.0	230	296	
	20°C)		8.0	170	229
		5.5	130	183	
		2.5	73	121	
Poly(isobutene)	Cyclohexane (temp = 20° C)	1.72	191	185	17
-		6.72	510	450	
		14.2	836	764	
Poly(methyl	Acetone (20°C)	1. 99	72	71	21
	methacrylate	13.0	224	210	
		65.0	614	603	
	Dioxane (25°C)	1.9 9	134	79.3	
		13.0	412	238	
		65.0	1040	712	

TABLE IV Comparison of Predicted and Experimental k_s

coincidence between predicted and experimental sedimentation coefficients is not as satisfactory at greater concentrations of higher molecular weight polyisobutenes.

The remaining figures are for poly(methyl methacrylate) polymers in acetone.²⁶ Here again the data points were taken from published plots and are probably less reliable than those in earlier examples. The model gives generally good agreement with experimental results.

DISCUSSION

The theory presented here appears to be useful for predicting sedimentation coefficients. The agreement between estimated and experimental values is not close for the highest molecular weight specimens of polyisobutene and poly-(methyl methacrylate), but these data may be less reliable than others because of experimental difficulties with sedimentation rates and molecular weight

TABLE V Comparison of Experimental k_s and Calculated k_s for PMMA/Dioxane					
$\frac{\text{Mol wt}}{\times 10^{-6}}$	Expt ²¹ concn limit × 10 ⁻³ g/mL	Expt k _s (cm ³ /g)	$0.2 c_x \times 10^{-3} (g/mL)$	Calcd k _s nL) (cm ³ /g)	
0.199	≈4	134	5.0	125	
1.30	≈4	412	3.0	367	
6.50	≈1	1040	1.1	979	

measurements of such high molecular weight species when the studies in question were carried out some 30 years ago. The present model can generally be applied with confidence to a limit of c_x and even to higher concentrations in most cases.

An alternative way of expressing the concentration dependence of sedimentation rates is through the coefficient k_s in the expression

$$\frac{1}{S} = \frac{1}{S_0} \left[1 + k_s c \right]$$
(12)

It is a simple matter to apply the present model to calculate k_s . Sedimentation coefficients can be calculated up to $0.5 c_x$, and a least-squares line fitted to a plot of 1/S vs. c. This procedure parallels that which was used recently to obtain second virial coefficients.⁷ The $0.5 c_x$ limit corresponds roughly to an upper concentration limit one would employ in an actual experiment. Results obtained using such a procedure are listed in Table IV. In most cases, good agreement with experimental data are obtained.

The coefficient k_s in reality depends on the concentration range, and is only a constant in very dilute solutions. One can obtain the best match between experimental and calculated results if the concentration limits of the two are similar. Table V shows this improvement for the last set of results in Table IV by using 0.2 c_x as the concentration limit.

The present predictive method has been developed by considering polymer coils as equivalent in some respects to hard spheres. It is conceivable that flexible polymer coils can be represented thus to some extent. The procedure used here will probably not be adequate for rigid or semirigid polymers, however, and no claim is made for general applicability to all polymer solutions.

This work was supported by the Natural Sciences and Engineering Research Council of Canada.

References

1. A. Rudin and R. A. Wagner, J. Appl. Polym. Sci., 20, 1483 (1976).

2. H. K. Mahabadi and A. Rudin, Polym. J. (Jpn.), 11, 123 (1979).

3. C. M. Kok and A. Rudin, Makromol. Chem. Rapid Commun., 2, 655 (1981).

4. C. M. Kok and A. Rudin, Eur. Polym. J., 18, 363 (1982).

5. C. M. Kok and A. Rudin, Makromol. Chem., 182, 2801 (1981).

6. C. M. Kok and A. Rudin, J. Appl. Polym. Sci., 26, 3575 (1981).

7. C. M. Kok and A. Rudin, J. Appl. Polym. Sci., 26, 3583 (1981).

8. C. M. Kok and A. Rudin, J. Appl. Polym. Sci., 27, 353 (1982).

9. J. M. Burgers, Verh. K. Ned. Akad. Wet. (Sci. Sec.), 44, 67, 1171 (1941); 45, 9, 126 (1942).

10. M. E. Wales and K. E. van Holde, J. Polym. Sci., 14, 81 (1954).

11. P. J. Flory and T. G. Fox, Jr., J. Am. Chem. Soc., 73, 1904 (1951).

12. P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, NY, 1953.

13. T. Svedberg and K. O. Pedersen, *The Ultracentrifuge*, Clarendon, Oxford, 1940, Johnson Reprint Corp., New York, 1959.

14. L. A. Papazian, Polymer (London), 10, 399 (1969).

15. P. Outer, C. I. Carr, and B. H. Zimm, J. Chem. Phys., 18, 830 (1950).

16. I. Noda, K. Mizutani, T. Kato, T. Fujimoto, and M. Nagasawa, Macromolecules, 3, 787 (1970).

17. L. Mandelkern, W. R. Krigbaum, H. A. Scheraga, and P. J. Flory, J. Chem. Phys., 20, 1392 (1952).

18. J. Brandrup and E. H. Immergut, Eds., Polymer Handbook, Wiley, New York, 1975.

19. D. W. van Krevelen and P. J. Hoftyzer, Properties of Polymers—Their Estimation and Correlation with Chemical Structure, Elsevier, Amsterdam, 1976.

- 20. W. Heller and A. C. Thompson, J. Colloid Sci., 6, 57 (1951).
- 21. H. van Lutje and G. Meyerhoff, Makromol. Chem., 68, 180 (1963).
- 22. H. Inagaki, H. Suzuki, M. Fujii, and T. Matsuo, J. Phys. Chem., 70, 1718 (1966).
- 23. R. Endo and M. Takedu, J. Polym. Sci., 56, 28 (1962).
- 24. U. Bianchi, M. Dalpiaz, and E. Patrone, Makromol. Chem., 80, 112 (1964).
- 25. T. G. Fox, Polymer (London), 3, 111 (1962).
- 26. G. Meyerhoff and G. V. Schulz, Makromol. Chem., 7, 294 (1951).
- 27. B. Nystrom, B. Porsch, and L-O. Sundelof, Eur. Polym. J., 13, 683, (1977).
- 28. P. F. Mijnlieff and W. J. M. Jaspers, Trans. Faraday Soc., 67, 1837 (1971).
- 29. S. Newman and F. Eirich, J. Colloid Sci., 5, 541 (1950).

Received December 15, 1981 Accepted February 26, 1982